96 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
为研究土工格栅加筋泡沫轻质土的抗折性能,将水、水泥、发泡剂按一定质量比配备,满足流值为160~200 mm,采用4种不同的土工格栅加筋层数(0、1、2、3)和3种湿密度(600、700、800 kg/m3),将边长95 mm的正方形和宽95 mm、长395 mm的矩形土工格栅放入试模指定位置,养护28 d后脱模,制备土工格栅加筋泡沫轻质土试件,对其进行无侧限抗压强度试验和四点弯曲试验,从位移-荷载曲线、破坏形态、位移-荷载特征、无侧限抗压强度和抗折强度等方面分析湿密度和加筋层数对泡沫轻质土抗折性能的影响。试验结果发现:施载后土工格栅加筋泡沫轻质土由脆性破坏变为弹塑性破坏,根据黏结应力机制将荷载传递到试件内部,显著提高泡沫轻质土的抗折性能;在加载过程中,前期主要由泡沫轻质土承担荷载,后期主要由土工格栅承担荷载;加入土工格栅明显提高泡沫轻质土的无侧限抗压强度和抗折强度,最大无侧限抗压强度为3.16 MPa,抗折强度最大可提高168%;建立基于湿密度和加筋层数的无侧限抗压强度拟合方程,发现无侧限抗压强度与抗折强度之比与湿密度间相关性较好。
Abstract:To study the flexural performance of geogrid-reinforced foam lightweight soil, water, cement, andfoaming agent are mixed in a certain mass ratio to achieve a flow value of 160-200 mm. Four different numbers of geogrid reinforcement layers(0, 1, 2, 3 layers) and three wet densities(600, 700, 800 kg/m3) are used. Square geogrids with a side length of 95 mm and rectangular geogrids measuring 95 mm in width and 395 mm in length are placed in the test mold. After curing for 28 days, the specimens are demolded, and foam lightweight soil specimens reinforced with geogrids are prepared. Unconfined compressive strength tests and four-point bending tests are conducted to analyze the effects of wet density and reinforcement layers on the flexural performance of foam lightweight soil from the aspects of displacement-load curves, failure modes, displacement-load characteristics, unconfined compressive strength, and flexural strength. The research findings are as follows: After loading, the reinforced foam lightweight soil transitions from brittle failure to elastic-plastic failure, significantly enhancing the flexural performance of the foam lightweight soil by transmitting load to the interior of the specimen according to the bonding stress mechanism; during the loading process, the foam lightweight soil primarily bear the load in the early stage, while the geogrid mainly bear the load in the later stage; the addition of geogrids significantly improves both the unconfined compressive strength and flexural strength of foam lightweight soil, with the maximum unconfined compressive strength reaching 3.16 MPa and the flexural strength increasing by up to 168%;a predictive equation for unconfined compressive strength based on wet density and reinforcement layers is established, revealing a good correlation between the ratio of unconfined compressive strength to flexural strength and wet density.
[1] RAJ A,SATHYAN D,MINI K M.Physical and functional characteristics of foam concrete:a review[J].Construction and Building Materials,2019,221:787-799.
[2] MUGAHED AMRAN Y H,FARZADNIA N,ABANG ALI A A.Properties and applications of foamed concrete:a review[J].Construction and Building Materials,2015,101:990-1005.
[3] 宋强,邹颖杰,张鹏,等.泡沫混凝土气泡性能与基体材料研究进展[J].硅酸盐学报,2024,52(2):706-724.
[4] ZHANG H B,QI X L,WAN L Y,et al.Properties of silt-based foamed concrete:a type of material for use in backfill behind an abutment[J].Construction and Building Materials,2020,261:119966.
[5] 刘雪雨,周国印,孔晓光,等.新型赤泥基泡沫轻质土材料性能及应用[J].铁道建筑,2023,63(10):118-123.
[6] 时磊,陈晗,窦俊艳,等.中型泡沫混凝土自保温砌块墙体热工性能数值分析研究[J].砖瓦,2024(5):18-23.
[7] 莫娅婵,张军辉,杨豪,等.改扩建工程路基差异沉降研究综述[J].长沙理工大学学报(自然科学版),2024,21(1):110-132.
[8] 刘红.土工格栅加筋高填路堤变形和稳定特性研究[D].武汉:华中科技大学,2013.
[9] 陈成华,黄志超,黄俊杰,等.纤维丝和网加筋泡沫轻质土力学特性和抗冻性[J].西南交通大学学报,2023,58(2):462-469.
[10] 刘曙光,张泽丰,肖俊杰,等.玄武岩纤维加筋泡沫轻质土物理力学特性[J].公路工程,2023,48(4):134-138.
[11] SHI X X,NING B K,WANG J X,et al.Improving flexural toughness of foamed concrete by mixing polyvinyl alcohol-polypropylene fibers:an experimental study[J].Construction and Building Materials,2023,400:132689.
[12] 杨莹,陈尚勇,杭红星.铁路泡沫轻质土路基挡护结构的优化设计研究[J].铁道建筑,2024,64(3):112-116.
[13] 陶宇.格栅增强泡沫混凝土及其路用性能试验研究[D].湘潭:湖南科技大学,2023.
[14] FALLIANO D,DE DOMENICO D,RICCIARDI G,et al.Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement:an experimental study[J].Composite Structures,2019,209:45-59.
[15] HULIMKA J,KRZYWO■DRZEJEWSKA A.Laboratory tests of foam concrete slabs reinforced with composite grid[J].Procedia Engineering,2017,193:337-344.
[16] 王志杰,蔡永明,齐逸飞,等.土工格栅加筋橡胶碎石混合料大型三轴试验研究[J].铁道科学与工程学报,2023,20(7):2509-2520.
[17] 吴黎明,朱亚林,许倩,等.土工格栅加筋砂土的三轴试验研究[J].合肥工业大学学报(自然科学版),2024,47(1):83-90.
[18] 中华人民共和国住房和城乡建设部.气泡混合轻质土填筑工程技术规程:CJJ/T 177—2012[S].北京:中国建筑工业出版社,2012.
[19] 刘英,张鹏恒,赵相高.掺加粉质黏土的泡沫轻质土材料性能试验研究[J].公路交通科技,2024,41(5):20-26.
[20] 全国水泥制品标准化技术委员会(SAC/TC 197).蒸压加气混凝土性能试验方法:GB/T 11969—2020[S].北京:中国标准出版社,2020.
[21] 张昕毅.聚丙烯纤维改性橡胶泡沫轻质土静动力学特性及耐久性能研究[D].济南:山东大学,2023.
[22] 刘杰民,李辉,张宝华,等.基于X-CT扫描技术的泡沫轻质土孔结构分析[J].北京工业大学学报,2024,50(10):1228-1236.
[23] 欧孝夺,彭远胜,莫鹏,等.掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J].材料导报,2020,34(增刊1):241-245.
[24] 美国材料与试验协会(American Society for Testing and Materials,ASTM).使用三分点加载梁法测试纤维增强混凝土弯曲性能的标准试验方法:ASTM C1609/C1609M—2024[S].West Conshohocken,United States:ASTM,19428-19437.
[25] 程冠之.制备参数对泡沫轻质土工作性能和力学性能的影响[J].铁道建筑,2017,57(1):56-60.
[26] 侯智坚,王爱涛,公彦昆,等.泡沫轻质土力学性能与干湿循环试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(1):80-85.
基本信息:
DOI:
中图分类号:U416.1
引用信息:
[1]李银河,刘勇,张宏博.土工格栅加筋泡沫轻质土抗折性能试验研究[J].山东交通学院学报,2025,33(02):77-85+109.
基金信息:
国家自然科学基金项目(51978034); 国家重点研发计划项目(2022YFB2601900)