nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.33 10-18
基于改进YOLOv5s算法的轨道扣件缺陷检测
基金项目(Foundation): 山东省自然科学基金青年基金项目(ZR2022QF107)
邮箱(Email): ruanjh2011@163.com;
DOI:
摘要:

针对轨道扣件缺陷复杂程度较高、严重影响列车行车安全、人工巡检效率较低等问题,提出一种基于计算机视觉的轨道扣件缺陷检测算法。考虑轨道扣件缺陷的特征以及检测时所处复杂作业环境,采用ConvNeXt V2模块代替YOLOv5s算法主干网络前端C3模块,采用Efficient Rep网络改进YOLOv5s算法主干网络末端,引入具有动态非聚焦机制的损失函数WIoU加快YOLOv5s算法模型计算收敛速度,形成改进YOLOv5s算法(CR-YOLOv5s算法),检测轨道扣件缺陷状态,开展消融试验,并与快速区域卷积神经网络(faster region-based convolutional neural networks, Faster R-CNN)算法、单阶多层检测(single shot multibox detector, SSD)算法、YOLOv3算法、YOLOv4算法检测进行对比试验。试验结果表明:CR-YOLOv5s算法的召回率为89.3%,平均检测精度均值为95.8%,平均检测时间为10.1 ms, 3项指标均优于其他4种算法;与YOLOv5s算法相比,CR-YOLOv5s算法的召回率均值提高5.7%,平均检测精度均值提高4.0%,平均检测时间延长1.0 ms。综合考虑轨道扣件状态检测任务要求、召回率、平均检测精度均值、平均检测时间等因素,采用CR-YOLOv5s算法检测轨道扣件缺陷状态更具优势。

Abstract:

Aiming at the problems of high complexity of track fastener defects, serious impact on train safety, and low efficiency of manual inspection, a track fastener defect detection algorithm based on computer vision is proposed. Considering the characteristics of track fastener defects and the complex working environment during detection, the ConvNeXt V2 module is used to replace the front-end C3 module of the YOLOv5s algorithm backbone network, the Efficient Rep network is used to improve the back-end of the YOLOv5s algorithm backbone network, and the WIoU loss function with dynamic non-focusing mechanism is introduced to accelerate the convergence speed of the YOLOv5s algorithm model, forming an improved YOLOv5s algorithm(CR-YOLOv5s algorithm) to detect track fastener defect states. Ablation experiments and comparative experiments with faster region-based convolutional neural networks(Faster R-CNN) algorithm, single shot multibox detector(SSD) algorithm, YOLOv3 algorithm, and YOLOv4 algorithm are conducted. The experimental results show that the recall rate of CR-YOLOv5s algorithm is 89.3%, the average detection accuracy is 95.8%, and the average detection time is 10.1 ms, all three indicators are superior to the other four algorithms. Compared with the YOLOv5s algorithm, the CR-YOLOv5s algorithm improves the recall rate by 5.7%, the average detection accuracy by 4.0%, and prolongs the average detection time by 1.0 ms. Considering factors such as track fastener state detection task requirements, recall rate, average detection accuracy, and average detection time, the CR-YOLOv5s algorithm is more advantageous for detecting track fastener defect states.

参考文献

[1] 吴送英,刘林芽,江家明,等.复杂背景下铁路扣件的改进YOLOv5s检测算法[J].中国铁道科学,2023,44(3):53-63.

[2] 范宏,侯云,李柏林,等.基于区域特征的缺陷扣件视觉检测[J].铁道学报,2021,43(8):132-138.

[3] ZHUANG L,QI H Y,WANG T G,et al.Adeep-learning-powered near-real-time detection of railway track major components:a two-stage computer-vision-based method[J].IEEE Internet of Things Journal,2022,9(19):18806-18816.

[4] 邱实,陈斌,胡文博,等.基于深度风格迁移合成数据的扣件异常状态检测[J].铁道学报,2024,46(10):122-131.

[5] LIU J J,YUAN J Y,JIA Y F.A new method for railway fastener detection using the symmetrical image and its EA-HOG feature[J].International Journal of Pattern Recognition and Artificial Intelligence,2020,34(2):2055006.

[6] YANG J F,LIU M H,ZHAO H,et al.An efficient image-based method for detection of fastener on railway[J].Advanced Materials Research,2011,346:731-737.

[7] 代先星,丁世海,阳恩慧,等.铁路扣件弹条伤损自动检测系统研发与验证[J].铁道科学与工程学报,2018,15(10):2478-2486.

[8] LIU J W,TENG Y,SHI B,et al.A hierarchical learning approach for railway fastener detection using imbalanced samples[J].Measurement,2021,186:110240.

[9] AZIZ L,HAJI SALAMMd Sah Bin,SHEIKH U U,et al.Exploring deep learning-based architecture,strategies,applications and current trends in generic object detection:a comprehensive review[J].IEEE Access,2020,8:170461-170495.

[10] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detector[C]//Computer Vision-ECCV 2016.Cham,Germany:Springer International Publishing,2016:21-37.

[12] REDMON J,FARHADI A.Yolov3:an incremental improvement[C]//Proceedings of 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2018:1-6.

[13] WEI X K,YANG Z M,LIU Y X,et al.Railway track fastener defect detection based on image processing and deep learning techniques:a comparative study[J].Engineering Applications of Artificial Intelligence,2019,80:66-81.

[14] 黄午祥,江南.基于改进Faster R-CNN算法的扣件缺陷检测[J].软件导刊,2023,22(5):190-197.

[15] 李少佳,胡美振,陈辉东,等.基于轻量化GoogLeNet模型的轨道扣件缺陷状态识别[J].北京联合大学学报,2023,37(1):6-12.

[16] 高嘉琳,白堂博,姚德臣,等.基于改进YOLOv4算法的铁路扣件检测[J].科学技术与工程,2022,22(7):2872-2877.

[17] WOO S,DEBNATH S,HU R H,et al.ConvNeXt V2:co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE,2023:16133-16142.

[18] WENG K H,CHU X X,XU X M,et al.EfficientRep:an efficient repvgg-style ConvNets with hardware-aware neural network design[EB/OL].(2023-02-01)[2024-01-26].https://arxiv.org/abs/2302.00386v1.

[19] DING X H,ZHANG X Y,MA N N,et al.RepVGG:making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,TN,USA:IEEE,2021:13728-13737.

[20] TONG Z J,CHEN Y H,XU Z W,et al.Wise-IoU:bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-04-08)[2024-01-26].https://arxiv.org/abs/2301.10051v3.

[21] YU J H,JIANG Y N,WANG Z Y,et al.UnitBox:an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia.Amsterdam,Netherlands:ACM,2016:516-520.

[22] 李烨恒,罗光圣,苏前敏.基于改进YOLOv5的Logo检测算法[J].计算机应用,2024,44(8):2580-2587.

[23] 唐振超,韦蔚,罗蔚然,等.融合余弦退火与空洞卷积的遥感影像语义分割[J].遥感学报,2023,27(11):2579-2592.

[24] 吴睿曦,肖秦琨.基于深度网络和数据增强的多物体图像识别[J].国外电子测量技术,2019,38(5):86-90.

基本信息:

DOI:

中图分类号:TP183;TP391.41;U216.3

引用信息:

[1]张兴盛,阮久宏,沈本兰等.基于改进YOLOv5s算法的轨道扣件缺陷检测[J].山东交通学院学报,2025,33(02):10-18.

基金信息:

山东省自然科学基金青年基金项目(ZR2022QF107)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文