24 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
为研究加筋土试件电阻率随加载时间、荷载及筋带应变变化的耦合关系,采用万能压力机和模具配合压制加筋土试件,在设计位置埋设CPE3020型钢塑复合拉筋带,采用万用表测量加筋土试件电阻率变化,研究其电阻率响应特性。试验结果表明:加筋土试件电阻率随加载时间、荷载和筋带应变的增大而减小;相同压实度下,含水率越高,加筋土试件电阻率越小;相同含水率下,压实度越大,加筋土试件电阻率越小;压实度越小,加筋土试件电阻率突变越早,试件承载能力越弱;压实度越大,加筋土试件电阻率突变越晚,试件承载能力越强;加筋土试件破坏时,电阻率突变对预测加筋土试件破坏程度问题有较好的响应特征。
Abstract:To study the coupling relationship between the resistivity of reinforced soil and the loading time, load magnitude, and strain of the reinforcement, a universal testing machine and mold are used to compress reinforced soil specimens. CPE3020 type steel-plastic composite reinforcement strips are embedded at designated positions, and a multimeter is used to measure the changes in resistivity of the soil specimens, investigating the resistivity response characteristics of small reinforced soil specimens. The experimental results indicate: The resistivity of the soil specimens decreases with the increase of loading time, load, and strain of the reinforcement; under the same degree of compaction, higher moisture capacity results in lower soil specimens resistivity; under the same moisture capacity, greater compaction leads to lower soil specimens resistivity; the smaller the degree of compaction, the earlier the sudden change in soil specimens resistivity occurs, and the weaker the bearing capacity of the specimen; the greater the degree of compaction, the later the sudden change in soil specimens resistivity occurs, and the stronger the bearing capacity of the specimen; when the reinforced soil specimens fails, the sudden change in resistivity has a good response characteristic for predicting the damage degree of the reinforced soil body.
[1] 李金铭,罗延钟.电法勘探新进展[M].北京:地质出版社,1996.
[2] 孙忠辉.高密度电法在复杂岩溶区公路勘察中的应用效果研究[D].成都:西南交通大学,2014.
[3] 储亚,刘松玉,蔡国军,等.基于电阻率静力触探的膨胀土膨胀性原位评价应用研究[J].地基处理,2023,5(2):91-96.
[4] 赵贵章,孔令莹,徐远志,等.基于高密度电阻率法的灌溉过程田间水分入渗特征研究[J].华北水利水电大学学报(自然科学版),2023,44(2):24-29.
[5] 索奎,刘文辉,倪云鹏,等.三维电阻率成像在小型滑坡探测中的应用[J].华北水利水电大学学报(自然科学版),2022,43(6):71-78.
[6] 段明杰.高密度电阻率法在金沙江大跨径悬索桥地质勘察中的应用[J].福建建材,2023(3):31-34.
[7] 中华人民共和国交通运输部,交通运输部公路科学研究院.公路土工试验规程:JTG 3430—2020[S].北京:人民交通出版社,2020.
[8] 申纪伟,毛海涛,王正成,等.电极接触与间距对土壤电阻率测量的影响[J].土壤学报,2019,56(5):1247-1258.
[9] 刚绪广,李庆轩,陈逸飞.高密度电法在地下水渗流通道探测中的技术应用[J].山西建筑,2024,50(5):86-88.
[10] 卢向星,陈慈河,孙旭,等.高密度电阻率法联合自然电场法在滑坡探测中的应用研究[J].中国水运,2023(9):150-152.
[11] 刘国兴.电法勘探原理与方法[M].北京:地质出版社,2005
[12] 孙举孔,陈闽昆,马韬,等.高密度电阻率法在废渣堆滑坡地质勘察中的应用[J].世界有色金属,2022(24):205-207.
[13] YANG S Q,JING H W.Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J].International Journal of Fracture,2011,168(2):227-250.
[14] WANG Y H,LIU Y F,MA H T.Changing regularity of rock damage variable and resistivity under loading condition[J].Safety Science,2012,50(4):718-722.
[15] KAHRAMAN S,YEKEN T.Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks[J].Bulletin of Materials Science,2010,33(6):731-735.
[16] 刘坤,王恒.高密度电阻率法在昆山某场地土壤污染调查中的应用[J].能源技术与管理,2022,47(3):177-180.
[17] 刘书瑶,张耀平,刘波,等.高密度电法在隐伏采空区识别分析中的应用[J].化工矿物与加工,2022,51(5):28-32.
[18] 赵虎,张泉,谭建秋,等.基于综合物探方法的公路不稳定边坡潜在滑面探测[J].中国地质灾害与防治学报,2022,33(1):117-122.
[19] 时义龙,江博君.高密度电阻率法在堤防渗漏探测中的应用[J].治淮,2021 (9):42-43.
[20] 杨杰,李玥.高密度电阻率法探测某基岩滑坡应用及其特征分析[J].工程与建设,2020,34(4):686-688.
[21] 董永福,朱欢.基于高密度电阻率法土石坝防渗墙检测技术初探[J].中国水运,2020,20(4):129-130.
[22] 王俊璇.受载条件下岩石电阻率特性的理论与试验研究[D].重庆:重庆交通大学,2012.
[23] 吴维义,李法滨.综合物探技术在某公路采空区探测工作中的应用[J].中国水运,2019,19(12):201-203.
[24] 王鹏云.硫酸镁环境下偏高岭土对水泥土强度及电阻率的影响研究[D].太原:太原理工大学,2019.
[25] 匡野,魏柯佳,肖瑞卿,等.基于高密度电法及工程勘察对苏码头断裂综合探测[J].大地测量与地球动力学,2024,44(3):316-320.
[26] 杨林,陈波,于洪军,等.基于连续高密度电阻率测量判断海水入侵影响范围的实验研究[J].海洋环境科学,2025,44(2):266-275.
[27] 林才德,唐孟雄,刘祥泰,等.高密度电阻率法在城市岩溶探测中的应用研究[J].广州建筑,2025,53(3):50-54.
[28] 刘欣怡.高密度电阻率法在水库坝址勘查中的应用[J].陕西水利,2025(2):93-95.
基本信息:
DOI:
中图分类号:U416.14
引用信息:
[1]赵亚文,刘勇,刘长青.小型加筋土试件电阻率响应特征[J].山东交通学院学报,2025,33(02):71-76.
基金信息:
国家自然科学基金项目(51978034); 国家重点研发计划项目(2022YFB2601900)