nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 03, v.30 20-29
自动驾驶汽车目标检测方法综述
基金项目(Foundation): 国家自然科学基金项目(51505258,61601265,51405272); 山东省自然科学基金项目(ZR2015EL019,ZR2020ME126,ZR2021MF131); 山东省高等学校“青创科技计划”项目(2019KJB019); 国家重点实验室开放课题(1903); 河北省交通安全与控制重点实验室开放项目(JTKY2019002)
邮箱(Email):
DOI:
摘要:

目标检测是自动驾驶汽车环境感知的重要内容。综合国内外部分研究文献,基于目标检测用传感器的数量及种类对自动驾驶汽车目标检测方法进行分类,总结分析每种目标检测方法的特点及研究现状,展望自动驾驶汽车目标检测方法的未来发展趋势为:基于视觉检测方法的轻量级车载应用,3种及以上传感器数据融合技术,多传感器信息融合在小目标和集群目标检测及复杂恶劣环境下的目标检测应用。

Abstract:

Target detection is an important research content for environment perception of autonomous vehicles. Some literature from domestic and foreign researchers is synthesized to classify target detection methods based on the number and types of sensors used for target detection. The characteristics and research status of each target detection method are summarized and analyzed, and the future development directions of target detection methods for autonomous vehicles are looked forward to, including lightweight on-board applications based on vision detection methods, data fusion technology with three and more sensors, and the applications of multi-sensor information fusion in small target, cluster target detection and target detection under complex and harsh environments.

参考文献

[1]王艺帆.自动驾驶汽车感知系统关键技术综述[J].汽车电器,2016(12):12-16.WANG Yifan.Overview onkey technology of perceptual system on self-driving vehicles[J].Auto Electric Parts,2016(12):12-16.

[2]THRUN S.Toward robotic cars[J].Communications of the ACM,2010,53(4):99-106.

[3]WANG G J,WU J,HE R,et al.A point cloud-based robust road curb detection and tracking method[J].IEEE Access,2019,7:24611-24625.

[4]王世峰,戴祥,徐宁,等.无人驾驶汽车环境感知技术综述[J].长春理工大学学报(自然科学版),2017,40(1):1-6.WANG Shifeng,DAI Xiang,XU Ning,et al.Overview on environment perception technology for unmanned ground vehicle[J].Journal of Changchun University of Science and Technology (Natural Science Edition),2017,40(1):1-6.

[5]ZHANG S,ZHAO X,LEI W B,et al.Front vehicle detection based on multi-sensor fusion for autonomous vehicle[J].Journal of Intelligent and Fuzzy Systems,2019,38(1):1-13.

[6]VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai,HI,USA:IEEE,2001:990517.

[7]DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:IEEE,2005:886-893.

[8]FELZENSZWALB P,MCALLESTER D,RAMANAN D.A discriminatively trained,multiscale,deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,AK,USA:IEEE,2008:1-8.

[9]李星,郭晓松,郭君斌.基于HOG特征和SVM的前向车辆识别方法[J].计算机科学,2013,40(增刊2):329-332.LI Xing,GUO Xiaosong,GUO Junbin.HOG-feature and SVM based method for forward vehicle recognition[J].Computer Science,2013,40(Suppl.2):329-332.

[10]孙可,张琦,李航,等.基于改进可变形部件模型的车辆检测[J].沈阳师范大学学报(自然科学版),2020,38(6):532-536.SUN Ke,ZHANG Qi,LI Hang,et al.Vehicle detection based on improved deformable part model[J].Journal of Shenyang Normal University(Natural Science Edition) ,2020,38(6):532-536.

[11]FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D.Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA:IEEE,2010:2241-2248.

[12]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:779-788.

[13]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference Computer Vision.Amsterdam,The Netherlands:ECCV,2016:21-37.

[14]LIN T Y ,GOYAL P ,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(2):318-327.

[15]ZOU Z X,SHI Z W,GUO Y H,et al.Object detection in 20 years:a survey[J/OL].arXiv Preprint,2019[2021-11-28].https://arxiv.org/abs/1905.05055v2.

[16]SHAN H X,ZHU W X.A small traffic sign detection algorithm based on modified SSD[C]//IOP Conference Series:Materials Science and Engineering.Beijing,China:2019 3rd International Conference on Artificial Intelligence Applications and Technologies,2019,646:012006.

[17]PEI D S,JING M X,LIU H P,et al.A fast RetinaNet fusion framework for multi-spectral pedestrian detection[J].Infrared Physics & Technology,2020,105:103178.

[18]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus,OH,USA:IEEE,2014:580-587.

[19]HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.

[20]LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:936-944.

[21]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern.Santiago,Chile:ICCV,2015:1440-1448.

[22]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

[23]LIANG Z W,SHAO J,ZHANG D Y,et al.Small object detection using deep feature pyramid networks[C]//Advances in Multimedia Information Processing:PCM 2018.Hefei,China:19th Pacific-Rim Conference on Multimedia,2018:554-564.

[24]LI S H,LIN J Z,LI G Q,et al.Vehicle type detection based on deep learning in traffic scene[J].Procedia Computer Science,2018,131:564-572.

[25]廖岳鹏.基于多传感器的自动驾驶目标检测[D].成都:电子科技大学,2019.LIAO Yuepeng.Object detection in automatic driving with multi-sensor[D].Chengdu:University of Electronic Science and Technology of China,2019.

[26]SIMON M,MILZ S,AMENDE K,et al.Complex-YOLO:an euler-region-proposal for real-time 3D object detection on point clouds[C]//Proceedings of the European Conference on Computer Vision Workshops.Munich,Germany:ECCV,2018:197-209.

[27]LI B,ZHANG T L,XIA T.Vehicle detection from 3D lidar using fully convolutional network[C]//Proceedings of Robotics:Science and Systems.Ann Arbor,Michigan,USA:RSS 2016,2016:1-8.

[28]CHARLES R Q,SU H,KAICHUN M,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:77-85.

[29]MAO J,XU G L,LI W L,et al.Pedestrian detection and recognition using lidar for autonomous driving[C]//International Conference on Optical Instruments and Technology 2019:Optical Sensor and Applications.Beijing:2019 International Conference on Optical Instruments and Technology ,2019:114360R.

[30]QI C R,YI L,SU H,et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of Advances in Neural Information Processing Systems.Long Beach,USA:Advances in Neural Information Processing Systems,2017:5099-5108.

[31]BAI J,ZHANG Y F,HUANG L B,et al.Vehicle detection based on deep neural network combined with radar attention mechanism[R].United States:SAE Technical Paper,2020.

[32]BAI J,LI S,HUANG L B,et al.Robust detection and tracking method for moving object based on radar and camera data fusion[J].IEEE Sensors Journal,2021,21(9):10761-10774.

[33]ZHANG Y,BAO H.Point clouds-image fusion by convolutional method for data integrity using neural network[C]//2019 15th International Conference on Computational Intelligence and Security.Macao,China:IEEE,2019:345-348.

[34]胡远志,刘俊生,何佳,等.基于激光雷达点云与图像融合的车辆目标检测方法[J].汽车安全与节能学报,2019,10(4):451-458.HU Yuanzhi,LIU Junsheng,HE Jia,et al.Vehicle object detection method based on data fusion of LADAR points and image[J].Journal of Automotive Safety and Energy,2019,10(4):451-458.

[35]CHEN B,PEI X F,CHEN Z F.Research on target detection based on distributed track fusion for intelligent vehicles[J].Sensors,2020,20(1):1-17.

[36]WEI Z Q,ZHANG F K,CHANG S,et al.MmWave radar and vision fusion for object detection in autonomous driving:a review[J].Sensors,2022,22(7):2542.

[37]宫铭钱,冀杰,种一帆,等.基于激光雷达和视觉信息融合的车辆识别与跟踪[J].汽车技术,2020(11):8-15.GONG Mingqian,JI Jie,CHONG Yifan,et al.Sensor fusion of LiDAR and vision for vehicle detection and tracking[J].Automobile Technology,2020(11):8-15.

[38]KIM D Y,JEON M.Data fusion of radar and image measurements for multi-object tracking via Kalman filtering[J].Information Sciences,2014,278:641-652.

[39]LIANG M,YANG B,WANG S L,et al.Deep continuous fusion for multi-sensor 3D object detection[C]//Proceedings of the European Conference on Computer Vision.Munich,Germany:ECCV 2018:663-678.

[40]CHEN X Z,MA H M,WAN J,et al.Multi-view 3D object detection network for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:6526-6534.

[41]TATARCHENKO M,DOSOVITSKIY A,BROX T.Multi-view 3D models from single images with a convolutional network[C]//European Conference on Computer Vision.Amsterdam,Netherlands:ECCV 2016:322-337.

[42]王加,蒋晓瑜,纪伯公.基于D-S证据推理的多传感器信息融合技术在战场目标识别中的应用[J].装甲兵工程学院学报,2005,19(3):34-37.WANG Jia,JIANG Xiaoyu,JI Bogong.Multi-sensor information fusion theory based on D-S evidential theory and its application on TI[J].Journal of Academy of Armored Force Engineering,2005,19(3):34-37.

[43]LEE D H,PARK D.An efficient algorithm for fuzzy weighted average[J].Fuzzy Sets and Systems,1997,87(1):39-45.

[44]BECKER J C.Fusion of data from the object-detecting sensors of an autonomous vehicle[C]//Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems.Tokyo,Japan:IEEE,1999:362-367.

[45]MASKELL S.A Bayesian approach to fusing uncertain,imprecise and conflicting information[J].Information Fusion,2008,9(2):259-277.

[46]徐从富,耿卫东,潘云鹤.面向数据融合的DS方法综述[J].电子学报,2001,29(3):393-396.XU Congfu,GENG Weidong,PAN Yunhe.Review of Dempster-Shafer method for data fusion[J].Acta Electronica Sinica,2001,39(3):393-396.

[47]谭宝成,李博.基于无人车传感器系统的加权平均数据融合算法研究[J].电子设计工程,2015,23(16):95-97.TAN Baocheng,LI Bo.The weighted average of the data fusion algorithm research of driverless vehicle sensor system[J].Electronic Design Engineering,2015,23(16):95-97.

[48]甄媚,王书朋.可见光与红外图像自适应加权平均融合方法[J].红外技术,2019,41(4):341-346.ZHEN Mei,WANG Shupeng.An adaptive weighted average fusion method for visible and infrared images[J].Infrared Technology,2019,41(4):341-346.

[49]LIU Q H,ZHOU W Q,ZHANG Y K,et al.Multi-target detection based on multi-sensor redundancy and dynamic weight distribution for driverless cars[C]//2021 International Conference on Communications,Information System and Computer Engineering.Beijing,China:IEEE,2021:229-234.

[50]KO N Y,YOUN W,CHOI I,et al.Features of invariant extended Kalman filter applied to unmanned aerial vehicle navigation[J].Sensors,2018,18(9):2855.

[51]GOH S T,ABDELKHALIK O,ZEKAVAT S A.A weighted measurement fusion Kalman filter implementation for UAV navigation[J].Aerospace Science and Technology,2013,28(1):315-323.

[52]LI D H,ZHOU J,LIU Y.Recurrent-neural-network-based unscented Kalman filter for estimating and compensating the random drift of MEMS gyroscopes in real time[J].Mechanical Systems and Signal Processing,2021,147:107057.

[53]GAO J B,HARRIS C J.Some remarks on Kalman filters for the multisensory fusion[J].Information Fusion,2002,3(3):191-201.

[54]MENG Z H,HO Q H,HUANG Z F,et al.Online multi-target tracking for maneuvering vehicles in dynamic road context[J/OL].arXiv Preprint,2019[2021-11-28].https://arxiv.org/abs/1912.00603.

[55]彭文正,敖银辉,黄晓涛,等.多传感器信息融合的自动驾驶车辆定位与速度估计[J].传感技术学报,2020,33(8):1140-1148.PENG Wenzheng,AO Yinhui,HUANG Xiaotao,et al.Automatic vehicle location and state estimation based on multi-sensor data fusion[J].Chinese Journal of Sensors and Actuators,2020,33(8):1140-1148.

[56]AMINI A,KAMILOV U S,BOSTAN E,et al.Bayesian estimation for continuous-time sparse stochastic processes[J].IEEE Transactions on Signal Processing,2013,61(4):907-920.

[57]孙振东.面向多源数据融合的贝叶斯估计方法[J].齐鲁工业大学学报,2018,32(1):73-76.SUN Zhendong.Multi-sourcedata fusion oriented Bayesian estimation method research[J].Journal of Qilu University of Technology,2018,32(1) :73-76.

[58]陈晓龙,王家礼,孙璐,等.一种基于贝叶斯估计的多传感器测量数据融合方法[C]//第十九届全国测控、计量、仪器仪表学术年会论文集.桂林:第十九届全国测控、计量、仪器仪表学术年会,2009:464-467.CHEN Xiaolong,WANG Jiali,SUN Lu,et al.A method of data fusion for multi-sensor based on Bayesian estimation[C]//Proceedings of MCMI'2009.Guilin:MCMI'2009,2009:469-472.

[59]YU Z X,BAI J,CHEN S,et al.Camera-radar data fusion for target detection via Kalman filter and Bayesian estimation[C]//SAE Technical Paper.[S.l.]:SAE 2018 International Intelligent and Connected Vehicles Symposium,2018:2018-01-1608.

[60]蓝金辉,马宝华,蓝天,等.D-S证据理论数据融合方法在目标识别中的应用[J].清华大学学报(自然科学版),2001,41(2):53-55.LAN Jinhui,MA Baohua,LAN Tian,et al.D-S evidence reasoning and its data fusion application in target recognition[J].Journal of Tsinghua University (Science and Technology),2001,41(2):53-55.

[61]倪国强,梁好臣.基于Dempster-Shafer证据理论的数据融合技术研究[J].北京理工大学学报,2001,21(5):603-609.NI Guoqiang,LIANG Haochen.Data fusion technique based on Dempster-Shafer evidence theory[J].Transactions of Beijing Institute of Technology,2001,21(5):603-609.

[62]熊大容,杨烜.基于多传感器决策级融合的远距离目标检测[J].中国体视学与图像分析,2007,12(1):28-32.XIONG Darong,YANG Xuan.Long distance targets detection based on multisensor decision level fusion[J].Chinese Journal of Stereology and Image Analysis,2007,12(1):28-32.

[63]吕悦晶,宋向勃,张蕾,等.一种加权改进的D-S证据推理算法[J].计算机应用与软件,2011,28(10):30-33.Lü Yuejing,SONG Xiangbo,ZHANG Lei,et al.An algorithm of D-S evidential reasoning based on weighted improvement[J].Computer Applications and Software,2011,28(10):30-33.

[64]何明,汤伟,赖俊,等.大学计算机基础[M].南京:东南大学出版社,2015.

[65]毕靖,王青,石晓荣.神经网络数据融合机动目标跟踪算法[J].北京航空航天大学学报,2002,28(6):692-694.BI Jing,WANG Qing,SHI Xiaorong.Neural network data fusion for maneuvering targets tracking[J].Journal of Beijing University of Aeronautics and Astronautics,2002,28(6):692-694.

[66]BAI J,LI S,HUANG L,et al.Robust detection and tracking method for moving object based on radar and camera data fusion[J].IEEE Sensors Journal,2021,21(9):10761-10774.

[67]WEBER D,GüHMANN C,SEEL T.Neural networks versus conventional filters for inertial-sensor-based attitude estimation[C]//2020 IEEE 23rd International Conference on Information Fusion .Rustenburg,South Africa:IEEE,2020:1-8.

[68]FAN J Y,LEE J H,JUNG I S,et al.Improvement of object detection based on faster R-CNN and YOLO[C]//2021 36th International Technical Conference on Circuits/Systems,Computers and Communications.Jeju,Korea (South):IEEE,2021:1-4.

[69]刘洋.基于多传感器的车辆环境感知技术研究[D].长春:长春理工大学,2020.LIU Yang.Research on vehicle environment perception technology based on multi-sensor[D].Changchun:Changchun University of Science and Technology,2020.

[70]KHESBAK M S.Depth camera and laser sensors plausibility evaluation for small size obstacle detection[C]//2021 18th International Multi-Conference on Systems,Signals & Devices.Monastir,Tunisia:IEEE,2021:625-631.

[71]LIU Z,CAI Y F,WANG H,et al.Robust target recognition and tracking of self-driving cars with radar and camera information fusion under severe weather conditions[J].IEEE Transactions on Intelligent Transportation Systems,2021:1-14.

[72]MOHAMMED A S,AMAMOU A,AYEVIDE F K,et al.The perception system of intelligent ground vehicles in all weather conditions:a systematic literature review[J].Sensors,2020,20(22):6532-6566.

[73]KAVITHA R,NIVETHA S.Pothole and object detection for an autonomous vehicle using YOLO[C]//2021 5th International Conference on Intelligent Computing and Control Systems.Madurai,India:IEEE,2021:1585-1589.

基本信息:

DOI:

中图分类号:TP391.41;U463.6

引用信息:

[1]李爱娟,巩春鹏,黄欣等.自动驾驶汽车目标检测方法综述[J].山东交通学院学报,2022,30(03):20-29.

基金信息:

国家自然科学基金项目(51505258,61601265,51405272); 山东省自然科学基金项目(ZR2015EL019,ZR2020ME126,ZR2021MF131); 山东省高等学校“青创科技计划”项目(2019KJB019); 国家重点实验室开放课题(1903); 河北省交通安全与控制重点实验室开放项目(JTKY2019002)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文