| 139 | 0 | 29 |
| 下载次数 | 被引频次 | 阅读次数 |
为研究改性玉米秸秆纤维质量分数对沥青混合料高、低温性能的影响及纤维的分散均匀性,制备改性玉米秸秆纤维质量分数分别为0、0.2%、0.4%、0.6%、0.8%的沥青玛蹄脂碎石混合料(stone mastic asphalt, SMA)-13,进行车辙试验和低温小梁弯曲试验(试验温度分别为-5、-10、-15℃),采用方差分析与效应量分析,并结合低温弯拉强度、弯曲劲度模量、弯拉应变的标准差和改性玉米秸秆纤维质量分数,提出玉米秸秆纤维分散均匀性指数。结果表明:改性玉米秸秆纤维在沥青混合料中的质量分数为0.4%时,SMA-13的动稳定度最大,为4 268次/mm,比未掺入改性玉米秸秆纤维的基准组增大50.4%,低温弯拉强度和弯拉应变显著提高,弯曲劲度模量降幅最小,表明其在抗弯拉强度、刚度与延性间实现最优平衡,分散均匀性指数最大,为1.042,纤维分散性最好,与高、低温试验结果一致。
Abstract:To study the effect of the quality fraction of modified corn straw fibers on the high and low temperature performance of asphalt mixtures and the uniformity of fiber dispersion, asphalt mastic stone mixture(stone mastic asphalt, SMA) with modified corn straw fiber quality fractions of 0, 0.2%, 0.4%, 0.6%, and 0.8% are prepared. Rutting tests and low-temperature beam bending tests(-5,-10,-15 ℃) are conducted, and variance analysis(with a variance statistic of 66.47 and a probability of less than 0.000 1) and effect size analysis are performed. Combined with the standard deviations of low-temperature tensile strength, bending stiffness modulus, and tensile strain, as well as the quality fraction of modified corn straw fibers, a fiber dispersion uniformity index is proposed. The results show that when the quality fraction of modified corn straw fibers in the asphalt mixture is 0.4%, the dynamic stability is maximized at 4 268 times/mm, which is an increase of 50.4% compared to the control group without modified corn straw fibers. The low-temperature tensile strength and tensile strain are significantly improved, while the reduction in bending stiffness modulus is minimal, indicating an optimal balance between tensile strength, stiffness, and ductility. The dispersion uniformity index is maximized at 1.042, reflecting the best fiber dispersion, consistent with the results of high and low temperature tests.
[1] 李倩,王旭东,周兴业,等.沥青混合料高温性能转变特征及抗车辙指标构建[J/OL].西南交通大学学报.(2025-03-24)[2025-03-30].http://kns.cnki.net/kcms/detail/51.1277.u.20250324.1448.006.html.
[2] 谭忆秋,徐慧宁,赵春丽,等.冻融循环下沥青混合料损伤特性研究[J].沈阳建筑大学学报(自然科学版),2024,40(5):778-788.
[3] LIU Z,SUN L,LI J,et al.Effect of key design parameters on high temperature performance of asphalt mixtures[J].Construction and Building Materials,2022,348:1-11.
[4] 郭彦强,向豪,徐鹏,等.植物纤维增强沥青混合料性能试验研究[J].现代化工,2024,44(增刊1):129-131.
[5] 姚华彦,王旭洋,扈惠敏,等.玄武岩纤维增强沥青混合料的抗裂性能[J].公路,2024,69(6):285-292.
[6] 王修山,周恒宇,沈森杰,等.纤维增强聚合物改性沥青混合料路用性能研究[J].公路,2021,66(6):54-59.
[7] 余锦耀.秸秆纤维沥青混合料优化设计及路用性能评价[J].合成材料老化与应用,2025,54(1):48-50.
[8] 曲璐,王琨,朱玉珠,等.改性玉米秸秆纤维SMA-13路用性能试验研究[J].山东交通学院学报,2025,33(1):68-73.
[9] 王明华,张建超,刘儒成,等.玉米秸秆纤维改性沥青混合料试验研究[J].低温建筑技术,2023,45(8):95-99.
[10] 彭开兴.玉米秸秆纤维微观特性对其沥青胶浆粘弹特性影响研究[D].长春:吉林建筑大学,2023.
[11] 陈梓宁.玉米秸秆纤维沥青吸附机制及其SMA路用性能研究[D].哈尔滨:哈尔滨工业大学,2021.
[12] 徐豪,王琨,樊丽然,等.新型沥青混合料掺加料玉米秸秆纤维的制备工艺及改性方法[J].山东交通学院学报,2023,31(2):102-108.
[13] 李振霞,陈渊召,周建彬,等.玉米秸秆纤维沥青混合料路用性能及机理分析[J].中国公路学报,2019,32(2):47-58.
[14] 石振武,高博,徐传浩.冻融损伤作用下玉米秸秆纤维再生沥青混合料耐久性能研究[J/OL].辽宁工程技术大学学报(自然科学版).(2025-07-02)[2025-08-11].https://link.cnki.net/urlid/21.1379.n.20250702.0945.004.
[15] 中华人民共和国交通运输部,交通运输部公路科学研究院.公路工程沥青及沥青混合料试验规程:JTG E20—2011[S].北京:人民交通出版社,2011.
[16] 中华人民共和国交通运输部,交通运输部公路科学研究院.公路工程集料试验规程:JTG 3432—2024[S].北京:人民交通出版社,2024.
[17] 全国交通工程设施(公路)标准化技术委员会(SAC/TC 223).沥青路面用纤维:JT/T 533—2020[S].北京:人民交通出版社,2020.
[18] 朱玉珠.NaOH 改性玉米秸秆纤维沥青胶浆及其 SMA-13混合料性能研究[D].济南:山东交通学院,2023.
[19] MOHAMMED M,PARRY T,THOM N,et al.Microstructure and mechanical properties of fibre reinforced asphalt mixtures[J].Construction and Building Materials,2020,240:117932.1-117932.17.
[20] ZHAO H,LI G,MA Y W,et al.Long-term performance of chemically modified cotton straw fibers in micro-surfacing asphalt mixtures[J].Microelectronics Journal,2024,20:e03294.
[21] 黄小夏.秸杆纤维改性沥青混合料的试验及应用研究[J].西部交通科技,2019(12):22-25.
基本信息:
DOI:
中图分类号:X71;U414
引用信息:
[1]李强飞,王琨,谢丹丹,等.改性玉米秸秆纤维对沥青混合料性能影响及分散均匀性评价方法[J].山东交通学院学报,2025,33(04):59-67.
基金信息:
山东省交通运输科技计划项目(2023B65)