nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.33 19-25
基于车辆轨迹数据的城市道路驾驶行为分析
基金项目(Foundation): 国家自然科学基金青年基金项目(52102412); 山东省自然科学基金项目(ZR2023QE060); “新高校20条”自主培养创新团队项目(202333036)
邮箱(Email): xianhc11@163.com;
DOI:
摘要:

为提高城市道路交通安全,以车辆轨迹数据为基础,以济南市经十路某路段为研究对象,将道路划分为120个有效路段,研究道路坡度、交叉口、车道、公交车站、人行横道、辅道、交通吸引点等交通条件对车辆加速占比和减速占比的影响,选取主要影响因素建立驾驶行为与交通条件的多元Logistic回归分析模型,并选取长5 km的城市主干路为案例验证模型的适用性。结果表明:平坦路段、有交叉口路段更易产生加速和减速行为;有人行横道路段的车辆加速占比较无人行横道路段大,减速占比较无人行横道路段小;加速占比拟合回归模型和减速占比拟合回归模型预测结果准确率分别为73.91%、78.26%,模型适用性良好。

Abstract:

In order to improve urban road traffic safety, based on vehicle trajectory data, taking a certain section of Jingshi Road in Jinan City as the research object, the road is divided into 120 effective sections, and the influence of traffic conditions such as road slope, intersection, lane, bus stop, pedestrian crossing, auxiliary road, and traffic attraction point on vehicle acceleration and deceleration proportion is studied. The main influencing factors are selected to establish a multivariate logistic regression analysis model of driving behavior and traffic conditions, and a 5 km urban main road is selected as a case to verify the applicability of the model. The results show that flat sections and sections with intersections are more likely to produce acceleration and deceleration behaviors; the acceleration proportion of vehicles on sections with pedestrian crossings is greater than that on sections without pedestrian crossings; the deceleration proportion is smaller than that on sections without pedestrian crossings. The accuracy of the prediction results of the accelerated proportion fitting regression model and the decelerated proportion fitting regression model are 73.91% and 78.26%, respectively, and the model has good applicability.

参考文献

[1] ZHAO N,MEHLER B,REIMER B,et al.An investigation of the relationship between the driving behavior questionnaire and objective measures of highway driving behavior[J].Transportation Research Part F:Traffic Psychology and Behaviour,2012,15(6):676-685.

[2] TAO D,ZHANG R,QU X D.The role of personality traits and driving experience in self-reported risky driving behaviors and accident risk among Chinese drivers[J].Accident Analysis & Prevention,2017,99:228-235.

[3] 付佳杨.不良驾驶行为时空分布模式及影响因素分析[D].西安:长安大学,2022.

[4] 宁华晶.不安全驾驶行为与道路交通事故之间的关系研究[D].兰州:兰州交通大学,2023.

[5] VAN DER HORST R,DE RIDDER S.Influence of roadside infrastructure on driving behavior:driving simulator study[J].Transportation Research Record,2007(2018):36-44.

[6] MOLAN A M,MOOMEN M,KSAIBATI K.Investigating the effect of geometric dimensions of median traffic barriers on crashes:crash analysis of interstate roads in Wyoming using actual crash datasets[J].Journal of Safety Research,2019,71:163-171.

[7] 陈景嫦.道路行车环境对交通事故严重程度影响分析[D].西安:长安大学,2023.

[8] 梁陈磊,储江伟,李红.基于OBD数据挖掘的不良驾驶行为关联分析[J].现代电子技术,2022,45(21):145-150.

[9] 蔡晓禹,雷财林,彭博,等.基于驾驶行为和信息熵的道路交通安全风险预估[J].中国公路学报,2020,33(6):190-201.

[10] 张梦歌.驾驶行为数据驱动的城市道路交通安全风险辨识方法研究[D].重庆:重庆交通大学,2020.

[11] GRENGS J,WANG X G,KOSTYNIUK L.Using GPS data to understand driving behavior[J].Journal of Urban Technology,2008,15(2):33-53.

[12] 张礼宁.典型天气条件下山地城市道路异常驾驶行为研究[D].重庆:重庆交通大学,2021.

[13] 张琼月.山区农村公路长大纵坡路段安全评价及安保对策研究[D].重庆:重庆交通大学,2022.

[14] 申泽鸿.道路线型设计对交通安全的影响[J].黑龙江交通科技,2023,46(6):23-25.

[15] 卢闻夫.道路线形对交通安全的影响及评价方法分析[J].工程技术研究,2022,7(15):200-202.

[16] DE LA ESCALERA A,ARMINGOL J M,MATA M.Traffic sign recognition and analysis for intelligent vehicles[J].Image and Vision Computing,2003,21(3):247-258.

[17] BAGLOEE S A,ASADI M.Crash analysis at intersections in the CBD:a survival analysis model[J].Transportation Research Part A:Policy and Practice,2016,94:558-572.

[18] WERNEKE J,VOLLRATH M.What does the driver look at?The influence of intersection characteristics on attention allocation and driving behavior[J].Accident Analysis & Prevention,2012,45:610-619.

[19] WEI Z Q,QI X D,CHEN Y,et al.Bioinformatics method combined with logistic regression analysis reveal potentially important miRNAs in ischemic stroke[J].Bioscience Reports,2020,40(8):BSR20201154.

基本信息:

DOI:

中图分类号:U491.25

引用信息:

[1]康佳宜,咸化彩,曾辉莉.基于车辆轨迹数据的城市道路驾驶行为分析[J].山东交通学院学报,2025,33(02):19-25.

基金信息:

国家自然科学基金青年基金项目(52102412); 山东省自然科学基金项目(ZR2023QE060); “新高校20条”自主培养创新团队项目(202333036)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文