3 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
为分析闽粤琼沿海地区旅游交通碳排放的动态特征与驱动机制,基于闽粤琼沿海地区2012—2022年的面板数据,采用自下而上法测算闽粤琼沿海地区公路、铁路、民航、水路4种交通方式的旅游交通碳排放量,并分析其动态演变趋势;将Kaya恒等式与对数平均迪氏指数(logarithmic mean Divisia index, LMDI)分解法相结合,分析旅游者规模、旅游产业贡献度、旅游消费水平、旅游交通运输强度、能源强度、能源结构等6个驱动因素的影响效应及对旅游交通碳排放变化量的贡献率。结果表明:闽粤琼沿海地区2012—2022年旅游交通碳排放量呈先增长后减少的趋势,民航是旅游交通的主要碳排放源,其排放量占旅游交通碳排放量的82.00%;游客人均碳排放量逐年减小,年均增长率为-13.80%,碳排放的增长速度低于游客的增长速度;促进旅游交通碳排放增长的主要影响因素有旅游者规模、旅游产业贡献度、能源强度及能源结构,累积贡献率分别为91.88%、252.63%、356.79%、27.75%,抑制旅游交通碳排放增长的主要影响因素有旅游消费水平、旅游交通运输强度,累积贡献率分别为-87.01%、-542.04%。
Abstract:To analyze the dynamic characteristics and driving mechanisms of tourism transportation carbon emissions in Fujian-Guangdong-Hainan coastal regions, based on the panel data of Fujian-Guangdong-Hainan coastal regions from 2012 to 2022, the carbon emissions of tourism transportation by four modes of transportation, namely road, railway, civil aviation and waterway, are calculated using the bottom-up approach, and their dynamic evolution trends are examined. Combining the Kaya identity and the logarithmic mean Divisia index(LMDI) decomposition method, evaluates the impact and contribution rates of six driving factors: tourist scale, tourism industry contribution, tourism consumption level, tourism transportation intensity, energy intensity, and energy structure. The results show that from 2012 to 2022, tourism transportation carbon emissions in Fujian-Guangdong-Hainan coastal regions initially increased and then decreased overall. Aviation is the primary source of tourism transportation carbon emissions, accounting for 82.00% of the total. Per capita carbon emissions from tourists decline annually, with an average annual growth rate of-13.80%, indicating that carbon emissions grow at a slower rate than tourist numbers. The main factors promoting tourism transportation carbon emissions are tourist scale, tourism industry contribution, energy intensity, and energy structure, with cumulative contribution rates of 91.88%, 252.63%, 356.79%, and 27.75%, respectively. The key factors inhibiting carbon emissions growth are tourism consumption level and tourism transportation intensity, with cumulative contribution rates of-87.01% and-542.04%, respectively.
[1] 吕雁琴,范天正,张晋宁.中国交通运输碳排放效率的时空异质性及影响因素研究[J].生态经济,2023,39(3):13-22.
[2] TIAN Y.Study on the impact of carbon emission pollution on urban tourism environment[J].Engineering Reports,2023,5(8):e12641.
[3] WEAVER D.Can sustainable tourism survive climate change?[J].Journal of Sustainable Tourism,2011,19(1):5-15.
[4] 世界旅游组织.2030年全球旅游交通碳排放可达19.98亿吨[EB/0L].(2019-12-04)[2022-04-11].https://news.un.org/zh/story/2019/12/1046761.
[5] 刘丹丹.基于LEAP模型的旅游业碳排放测度与达峰路径研究[D].泉州:华侨大学,2021.
[6] 殷雅荣,李援.中国旅游交通碳排放强度的时空演变特征[J].科技和产业,2023,23(23):208-215.
[7] 雷婷,王奕淇,王超.中国省际旅游交通碳排放空间关联网络及影响因素[J].环境科学,2025,46(1):53-65.
[8] 张硕.黑龙江省旅游业碳排放测算及其影响因素分析[J].西部旅游,2024(9):31-33.
[9] 高源遥,沈西林,梁文灏,等.基于STIRPAT模型的四川省旅游业碳排放量影响因素分析[J].环境污染与防治,2023,45(12):1737-1742.
[10] 杨曦,李云云,林楚.武隆世界自然遗产地旅游交通碳排放研究[J].重庆师范大学学报(自然科学版),2017,34(1):131-137.
[11] 伊胜东.“双碳” 时代我国旅游景区净碳排放测算与旅游碳票发展路径研究:以黄山风景区为例[D].北京:中国社会科学院大学,2023.
[12] 左大杰,戴文涛.基于通径分析的四川省交通碳排放驱动机理研究[J].交通运输系统工程与信息,2018,18(2):230-235.
[13] WANG Z J,CHEN F,FUJIYAMA T.Carbon emission from urban passenger transportation in Beijing[J].Transportation Research Part D:Transport and Environment,2015,41:217-227.
[14] 郭向阳,穆学青,明庆忠,等.中国旅游交通碳排放格局及影响因素解析[J].地理与地理信息科学,2022,38(2):129-136.
[15] 冯达.中国入境旅游业碳排放测算及影响因素分析[D].沈阳:辽宁大学,2023.
[16] 厉建梅,李曼,元敏丽,等.大运河文化带沿线省份旅游交通碳排放的时空演变及影响因素研究[J].生态经济,2024,40(7):145-152.
[17] 魏艳旭,孙根年,马丽君,等.中国旅游交通碳排放及地区差异的初步估算[J].陕西师范大学学报(自然科学版),2012,40(2):76-84.
[18] 陶玉国,黄震方,史春云.基于替代式自下而上法的区域旅游交通碳排放测度[J].生态学报,2015,35(12):4224-4233.
[19] FILIMONAU V,DICKINSON J,ROBBINS D.The carbon impact of short-haul tourism:a case study of UK travel to Southern France using life cycle analysis[J].Journal of Cleaner Production,2014,64:628-638.
[20] 周可为,汤峻.南京市机动车尾气排放特征研究[J].环境科学与管理,2022,47(8):51-55.
[21] UNWTO.Climate change and tourism:responding to global challenges[M].Madrid,Spain:World Tourism Organization,2008.
[22] KUO N W,CHEN P H.Quantifying energy use,carbon dioxide emission,and other environmental loads from island tourism based on a life cycle assessment approach[J].Journal of Cleaner Production,2009,17(15):1324-1330.
[23] PEETERS P,DUBOIS G.Tourism travel under climate change mitigation constraints[J].Journal of Transport Geography,2010,18(3):447-457.
[24] PEETERS P,SZIMBA E,DUIJNISVELD M.Major environmental impacts of European tourist transport[J].Journal of Transport Geography,2007,15(2):83-93.
[25] 鞠小玉,刘俊豪,马春爱.基于熵权-TOPSIS模型的克拉玛依市脆弱性评价[J].城市学刊,2022,43(5):25-32.
[26] 刘云龙,田可.长江经济带旅游交通碳排放测算与影响因素[J/OL].重庆交通大学学报(社会科学版).(2025-04-18)[2025-05-06].http://kns.cnki.net/kcms/detail/50.1191.C.20250417.1709.002.html.
[27] 胡程,丁正山,穆学青,等.长江经济带旅游交通碳排放时空演变及驱动因素[J].南京师大学报(自然科学版),2022,45(1):40-48.
[28] 赵先超,滕洁.基于LMDI的湖南省旅游业碳排放影响因素分解[J].环境科学与技术,2018,41(9):192-199.
[29] 马慧强,刘嘉乐,弓志刚.山西省旅游交通碳排放测度及其演变机理[J].经济地理,2019,39(4):223-231.
[30] 王佳,薛景洁.旅游交通碳排放测算及影响因素分析[J].统计与决策,2016,32(13):61-64.
[31] 李江元,丁涛.我国碳排放增长的驱动因素分解:基于LMDI模型[J].煤炭经济研究,2020,40(6):47-56.
[32] 李颖.安徽省旅游交通碳排放测算及影响因素分析[J].中国环境管理干部学院学报,2018,28(1):50-53.
[33] 林伯强,刘希颖.中国城市化阶段的碳排放:影响因素和减排策略[J].经济研究,2010,45(8):66-78.
[34] ANG B W.Decomposition analysis for policymaking in energy:which is the preferred method?[J].Energy Policy,2004,32(9):1131-1139.
[35] 汪宏韬.基于LMDI的上海市能源消费碳排放实证分析[J].中国人口·资源与环境,2010,20(增刊2):143-146.
[36] 王兴中.中国旅游地理[M].北京:科学出版社,2013.
基本信息:
DOI:
中图分类号:F512.7;F592.7;X322
引用信息:
[1]张静怡,曹德浩,刘华琼.闽粤琼沿海地区旅游交通碳排放测度与驱动因素分析[J].山东交通学院学报,2025,33(03):22-31.
基金信息: